

HindPhotostat

Hind Photostat & Book Store

Best Quality Classroom Topper Hand Written Notes to Crack GATE, IES, PSU's & Other Government Competitive/ Entrance Exams

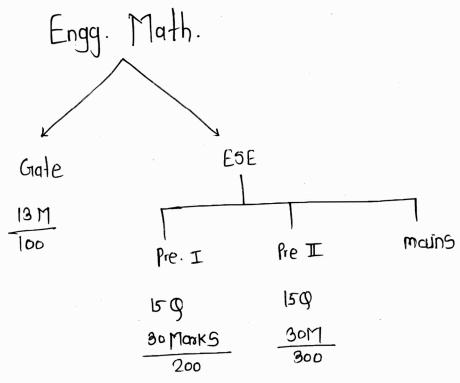
MADE EASY

IES/GATE/PSU
MATHEMATICS
BY-SREEKAR SIR

- Theory
- Explanation
- Derivation
- Example
- Shortcuts
- Previous Years Question With Solution

Visit us:-www.hindphotostat.com

Courier Facility All Over India (DTDC & INDIA POST) Mob-9311989030


(<u>;</u>)

(i)

HindPhotostat

PROFILE	Visit us:-www.hindphotostat.com
Name	bit.ly Casicinaths - ba
Subject	· @ SRIKAR GUP TA MATHS - Telegram
Academic year	• Semester bit.ly 2021 key - 1
Address	Contact linear algebra \$ 57
Branch	• bit.ly Stallmits - Standard
Professor in charge	• bit ly mag wb
Institute / university /school	Print Vo bit. 14 ENGIGMATH NOTES
	bit dy Corre Gr
	mbl. bit dy / strote 2021
	• bit. by 2021 Wb 50/n.
msq key: ch-1	bit. Jy / VC - 2020
remove ϕ . 8	r, g bit.ly msq keg
$ans \cdot 8 = (a_1 \mathbf{L})$	
i.	nportant notes
PLEASE CONTACT FOR:-	<u>9311989030</u> , 9560163471, 9711475393
PHOTOSAT COLOR B/W (LASE	ER DIGITAL)
PINTOUT COLOR RAW FROM	
PRINTOUT COIOR B/W FROM	COMPUTER
ALL PREVIOUSE PAPER AVAILAE	BLE
ALL HANDWRITTEN CLASS NOTI	ES
ALL NOTES BOOKS AVAILABLEA	ALL STUDY MATERIAL AVAILABLE
POONS AVAILABLEP	ILL JIODI WAIERIAL AVAILABLE

· Syllabus:

17.7

Reg !

<u></u>

(€) ₹

(3)

6.3

()

(*)

(3)

(3)

(1)

0

()

(

(1)

()

()

()

()

.)

3

Call D Linear algebra

- 2 Differential Equations
- 3 vector calculs
- 4 Diff. Equ
- (5) Complex Analysis
- @ fourier series
- 1 Probability

D Numerical methods

Linear Algebra

14

8

(j)

: (s)

(i)

(3)

.(9)

()

(3)

()

()

(3)

 $(\xi \cdot)$

(i)

()

()

 (\cdot,\cdot)

(9)

<u>(i)</u>

- Linear system
$$\neq$$
 Linear transformation $Ax = B$ $Ax = Y$

let,
$$x = Cost of a pens$$

 $y = Cost of pencil$

	Pen	Pencil	(95
I-day	3	2	50
I day	2	. 1	30

Linear eqⁿ:
$$3x + 2y = 50$$

 $2x + 1y = 30$

by solving both, x=10, y=10

$$\begin{cases}
3 & 2 \\
2 & 1
\end{cases}
\begin{bmatrix}
x \\
y
\end{bmatrix} = \begin{bmatrix}
50 \\
30
\end{bmatrix}$$
--- matrix form

- Linear algebra deals with linear systems of Linear transformation.
- As every Ls. & LT. can be expessed in matrix form & there by applying matrix methods.

Matrices:

def": The Arrangement of rows & Columns.

$$A = \begin{bmatrix} Qij \end{bmatrix}_{m \times n}$$
 order of matrix

element in 1th 10w f Jth Column's

 $m = no \text{ of tows}$
 $D = no \text{ of Column's}$

- · If m=n, Anxn is a square matrix.
- · If m +n, Amxn 15 a Rectangular matrix.
- · Lower triungular matrix:

$$A = \left(Q_{ij} \right)_{n \times n}$$

A =
$$Q_{11}$$
 Q_{12} Q_{13} Q_{23} Q_{23} Q_{23} Q_{33} Principle diagonal element

(

if above the principle diagonal elements are zero (0) then it is called as Lower triangular matrix.

$$A = \left[a_{ij}\right]_{n \times n} \quad \text{is L.T.M.}$$

$$\text{if all } a_{ij} = 0 \quad \text{for } j < j$$

86.3

()

19

()

 $(\tilde{\cdot})$

(3)

(3)

(3)

(3)

3

9

 $\left\{ \cdot \right\}$

3

)

9

· Upper triangular matrix:

if below the principle diagonal element are zero (0) then it is called as upper triangular element motifix

$$U = \begin{bmatrix} 2 & 0 \\ 0 & 2 & 2 \\ 0 & 0 & 3 \end{bmatrix}$$

· Diagonal matrix:

$$D = [di]_{nxn}$$
 is a diagonal matrix,

if
$$dij = 0$$
 for $i \neq j$; e.g. $\mathfrak{I} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$

· Salar matrix:

$$Q_{ij} = k$$
 e.g. $\begin{cases} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{cases}$

· Addition & Substraction:

$$A \pm B$$
, if $o(A) = O(B)$

· product of matrices:

If
$$A_{mxn}$$
, B_{pxq}
 $(A-B)_{mxq}$ is possible only if $n=p$
(no of columns of $A=no$ of rows of B)

Mote:
$$\begin{array}{c}
0 & AB + BA \\
0 & A(BC) = (AB)C
\end{array}$$

```
© Formulae: Let, Amxn. Bpxq & n=P,
   1 The no of Scalar multiplications required to Find
                                CIXBXBXC+CXD
       (AB) mxq = mpq
                                into = scalar multiplication
    1) The no of additions required to find (AB) mxq
           (AB) mxq = M(P-1)q
Girdle 5 W
       Let Puxz, Paxy, Ruxi be matrices find minm.
        no of multiplications required to find POR?
   Soln; we know that,
            (pq)R = p(qR)
        Consider, p(QR)
           QR -> Q2x4. R4x1 -> no. of Multiplications = 24.1 = 8
             P<sub>4×2</sub> (QR)<sub>2×1</sub> \Longrightarrow no. of multiplications = 4×2×1 = 8
                                                    minm no. of 16
                                                          mult = 16
    (onsider : ((p \phi)R)
          P4x2 Q2x4 --- no. of mult = 4x2x4 = 32
         (PQ)_{4\times4}. R_{4\times1} \longrightarrow no. of mutt^n = L\times4\times1 = 16
                                         max^{m}. no. of mut^{n} = 48
```

777

(

(E)

Ş

醇

 $\langle \dot{a} \rangle$

(:)

()

(3)

(3)

(3)

.)

(4)

min. no of addition =
$$2 \times 3 \times 1 = 6$$

 $+ 4 \times 1 \times 1 = 4$

(J

<u></u>

()

 \bigcirc

max^m. No. of addition =
$$4 \times 1 \times 4 = 16$$

+ $4 \times 3 \times 1 = 12$

Mote: The min. no. of multiplications required to get

PGR = 16

maxm no. of multiplications required to find PGR = 48

The minm no. of additions required = 10

maxm no. of additions required = 28

Transpose of Matrix:

e-y.
$$A = \begin{bmatrix} 2 & 3 \\ 4 & 5 \\ 6 & 7 \end{bmatrix} \implies A^{T} = \begin{bmatrix} 2 & 4 & 6 \\ 3 & 5 & 7 \end{bmatrix}$$

$$3X2$$

$$2X3$$